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| Introduction

What is Audio-Visual Learning?

=
Picture of the parking lot of a fire  People standing at a train station
station with three or four firetruck. with the train pulling in.
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Natural audio paired with the visual signal Descriptive narration for the visual signal



Introduction

Speech ? Audio ?
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Red and white colored fire truck in front of
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Introduction

Visually grounded speech(VGS)

There's a large open area with very very large rock

“H ety — pptes -

Picture of the parking lot of a fire station with three or four firetruck.

__ A large brick house. It 1s two stories tall. In the yard are several green bushes.

People standing at a train station with the train pulling in.

Spoken sentense-Visual Pair is provided.
Retrieve the most proper descriptive narration/image




Introduction

Visually grounded speech
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| Introduction

Difficulties

Collecting high quality spoken sentense-visual pair is difficult.

Picture of the parking lot of a fire station with three or four firetruck.

~SH 1o Hedont - et

A police car and a yellow car are in a car racing competition.

”I““;“““IE””””““““““““ The cars are making smoke. There is a crowd behind the cars.

Challenges in Creating or Collecting Large-Scale Datasets extremely difficult
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Motivation

"Apply knowledge transfer from CLIP to VGS”

Dataset

Spoken Sent%

transfer

Small dataset

Large dataset

We will use CLIP for
n ° ° ° 2 °I I o o .
our goal is to distill the knowledge from the CLIP model simiiar sampie mining
into the Visually Grounded Speech (VGS) system

to improve its retrieval score.”



Introduction

Comparison and Contrast: CLIP vs VGS

Why do we use CLIP?
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Method

Semantically Similar Samples

Dataset

.[ CLIP J
Image Encoder

Spoken Woh
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Conceptually
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Positive Pairs
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Speech to Text Text Encoder
Our Approach

@) Original Image @) Original speech
€) Image neighbor based on Text similarity ) Text neighbor based on Text similarity
) Image neighbor based on Image similarity  (§) Text neighbor based on Image similarity
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I Method

How to collect Semantically Similar Samples

"Apply knowledge transfer from CLIP to VGS”

Random sample among top K similar samples

A
f A}

Random sample among top K similar samples
A

A NN [ e

Query image
Random sample among top K similar samples
A,

CLIP

Image Encoder

r A}
Text feature space
4 ) 9.
3 e O o
T1
Picture of the parking lot of a fire CLIP T2 e T4 Query image
station with three or four firetruck. Text Encoder 7 5 Random sample among top K similar samples
T8
\. /

(T1 I

samples sorted base on the

Query text

feature similarity 1



| Method

How to collect Semantically Similar Samples

"Apply knowledge transfer from CLIP to VGS”

Random sample among top K similar samples Random sample among top K similar samples
A
r \ Sorted based on the feature similarity

T231 : Two pots of soup are cooking on a commercial stove
T171: A man and a chef's hat and white uniform is seen within a bowl of something while a pot
T971 : Close up photo of a chef working on some sort of a dish is pouring sugar or salt on top of it

f \ Sorted based on the feature similarity

Query image

Random sample among top K similar samples Random sample among top K similar samples
A T A s
Sorted based on the feature similarity r “\ Sorted based on the feature similarity

f |
.........

T1: The food is being cooked on a stove

T165 : The food is being cooked in skillet there's also some green vegetables
T674 : There are people cooking food in a kitchen :
T531 : This picture we also see some delicious food on a plate being prepared for dinner - . ' " -I 2

Query text




| Method

How to collect Semantically Similar Samples

"Apply knowledge transfer from CLIP to VGS”

T1: The food is being cooked on a stove

<org,org-

T231: Two pots of soup are cooking on a commercial stove T674 : There are people cooking food in a kitchen

<org, i2t> <i2i, 12t>

T674 : There are people cooking food in a kitchen T1: The food is being cooked on a stove

<org, t2t> “ <t2i, org>

T1: The food is being cooked on a stove T231: Two pots of soup are cooking on a commercial stove

<i2i, org> <12i, 12t>

T231: Two pots of soup are cooking on a commercial stove T674 : There are people cooking food in a kitchen

13

<i2i. i2t> " <t2i t2t>



I Experiments

My Method : Knowledge transfer from CLIP to VGS

224x224%64

224%224x3

112x112¢128

/ 56x56x256

28x28x512

I E 14x%14x512 14x14x1024

g, Image network
B I . ' Input image
G S e I n e . 1024x40 1024x128 1024x256
512x256 512x512
256a5IE 236512 128x512 1281024
Original Pair
Input speech reavency Speech network
'III-II-II-III-.'

224x224x64

»
*

224%224x3

112x112¢128

/ / 56x56x256

28x28x512

' E 14x14x812 14x14x1024

Image network

I r.eu

Propsed

Input image b M
r.ot

b o 1024340 1024x128 10241256 Qb i

512256 512x512 Ars
256x512 256x512
128%512 12841024
-~ — I:l ——
*
‘.-I--I-I--I-I-.‘

Input speech e Speech network ]4

method

time
time

..IIIIIIIIIIIIIIIIIIIIIIII"
v

‘.-II-II-I-III-II-I-I-I-I.

*

Positive Pairs



Results

Quantitative Results : Ablation study

Quantitative results on Places Audio Caption dataset out of 1000 saomples

NN Search A—1 I - A
Original T2T T2I 12T 121 | R@l1 R@5 R@10 R@1 R@5 R@10

(A) v X X X X 109 332 46.9 11.3 342 454
(B) v v X X X 114  36.5 49.8 126  38.5 493
(C) v X v X X 12.7 38.2 51.9 15.1 383 51.5
(D) v X X v X 106 329 49.2 125 353 48.2
(E) v X X X v 10 32.7 47.1 10.7  33.1 47.1
(F) v v X X v 11.5 354 50.4 12.1 37.5 50.1
G) v v X v X 12.8 38.7 52.1 13.7 38.1 51
(H) v v v v X 11.5 368 51.5 13.2 38.2 50.9
(1) v v v v v 106 356 52.2 12.1 36.1 51

Table 1. Ablation studies on our proposed method to see the

impact of each positive pair.

These experiments were conducted using a single GTX1080ti GPU.



| Results

Quantitative Results : Ablation study

Why does using i2i images as similar pairs result in lower performance?

Similar pair original pair Similar pair
Top 30
<i2i>
Original pair
Top 30 A stove that's heating up A stove that's heating up You can see the inside of The food is being
ot a metal pot that has a a metal pot that has a a boat made out of wood cooked on a stove |
12t water boiling in it water boiling in it
- Original pair Similar pair Original pair Similar pair
T i
The food is being : Top 30
cooked on a stove <t2i>
. . A ceramic bowl that The food is being
; : And there is a bi
mEmal AHEEDLE 2l J has agreed and said cooked on a stove
2t pot on the stove pot on the stove

16



I Results

False Negative Aware Contrastive Learning

Why did the Retrieval Score Increase?

False
negative

oo -1 —

False
negative

We discover that with a batch size of 128, around 40% of the samples in VGG Sound

will encounter at least one false negative sample during training. 1/

Learning Audio-Visual Source Localization via False Negative Aware Contrastive Learning (https:/ /arxiv.org/abs/2303.11302)



Results

False Negative Aware Contrastive Learning

Why did the Retrieval Score Increase?

False
negative

False
negative

o -+H4pe

My method

'False negatives lead to push, but they are pulled back due to positive similarities.”

similar
positive
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I Results

Quantitative Results : K - Ablation study

Quantitative results on Places Audio Caption dataset out of 1000 saomples

Audio to Image Image to Audio
— & —— R@1 - L Py —— R@1
]38 ] _ : | . _ _ "
o I O T I N D O @ lﬂﬁaf‘f':iﬂe__—_:_— glo_ R@10 BaseLine —_:_— glo
k in k-NN 10 30 100 300 1000
o 1 -~ | R@It | 126 106 95 97 8
o v T| R@51 | 359 356 348 329 26
) . < | R@I0T | 517 522 499 485 395
; ; «| R@I1 | 123 121 116 105 86
ol 2ol T R@5 1 371 36.1 349 338 279
- R@101T | 514 51 48.5 455 40.1
R@1 BaseLine | id i R@1Baseline, | | | & Table 2. Varying k in conceptually similar sample selection.
""""""" e "“““"“";1'_'__"'_‘:'_':__.“““ 10 - ! \
100 102 10° 101 107 107

k Values k Values

19



I Results

Quantitative Results : Basis of the research results

Average of the Top K similarity
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I Results

Quantitative Results: Curve Based on Data Set Size

Performance Efficiency Comparison: Baseline vs. Use of Positive Pairs

Dataset | SOK 100K 150K 200K 250K 300K 350K
= | R@17 5.3 10.9 13.6 17.4 18.6 19.3 21.7
T| rR@s T | 185 332 38.6 46.8  48.7 504 50.7
< | R@10 T 1302 469 528 59 62 62.6  65.1
< | R@17 3.6 11.3 14.4 18.2 18.5 21 20.4
T R@51 | 19.1 342 36.6 444 482 478 50.1
= | R@l01T | 31.2 454 514 56.7 60 61.2 64.4

Table 3.

Baseline performance varying with dataset size.

NN Search AT I-A
Original T2T I2T | R@1 R@5 R@10 R@1 R@5 R@10
100K v v v | 128 387 521 137 381 51
200K v v/ | 18 492 639 195 487 633
Table 4. Performance of positive pairs varying with dataset
size.
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I Conclusion

e "We are able to mine similar samples through knowledge transfer from
CLIP.

e Using this for training, we observe an improvement in retrieval scores.
This allows us to transfer the vast amount of knowledge from CLIP to
the Davenet model.

e False negatives can hinder the learning process, but by mining similar
samples and using them for training, we achieve improved
performance.’

22
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for listening




