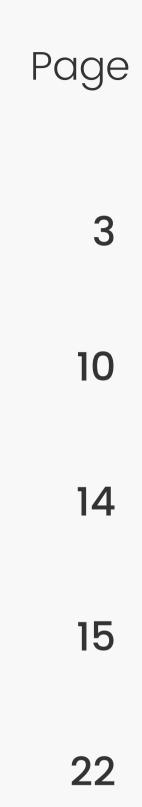
Knowledge transfer from CLIP to VGS

BOGON RYU

Table of Contents

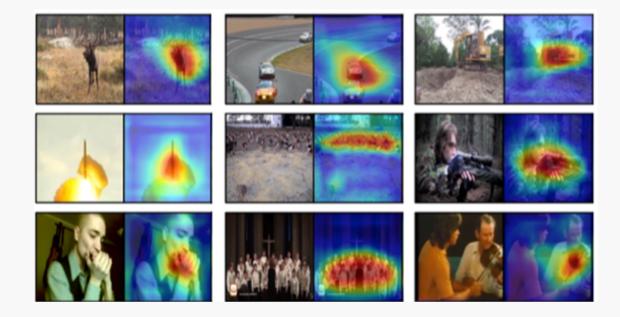
I	Introductior
II	Method
III	Experiment
IV	Results

V Conclusion



Introduction

What is Audio-Visual Learning?



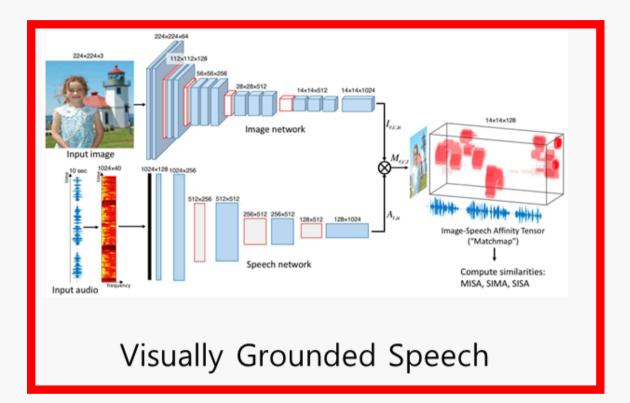
Natural audio paired with the visual signal

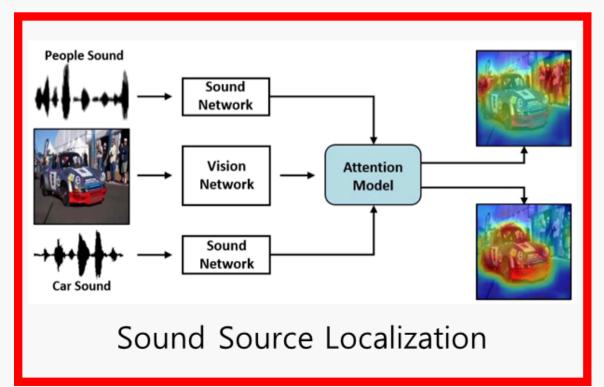
Picture of the parking lot of a fire People standing at a train station station with three or four firetruck. with the train pulling in. -------# # Hen- He- ----

Descriptive narration for the visual signal

Introduction

Speech ? Audio ?





PlacesAudio

VGGSound

Red and white colored fire truck in front of the station shown during the day

4

Introduction Visually grounded speech(VGS)

There's a large open area with very very large rock

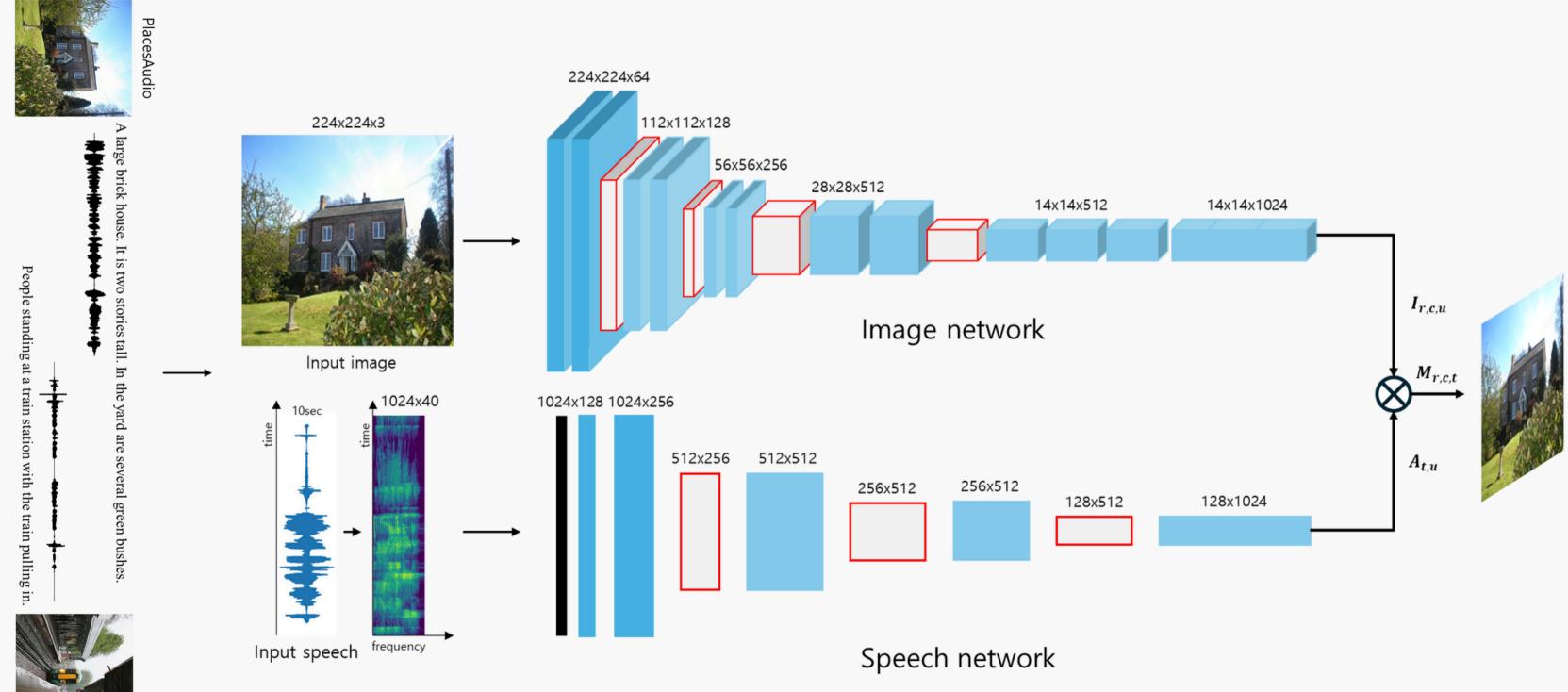
Picture of the parking lot of a fire station with three or four firetruck.

A large brick house. It is two stories tall. In the yard are several green bushes. 144400-1460-00#+ 840

People standing at a train station with the train pulling in.

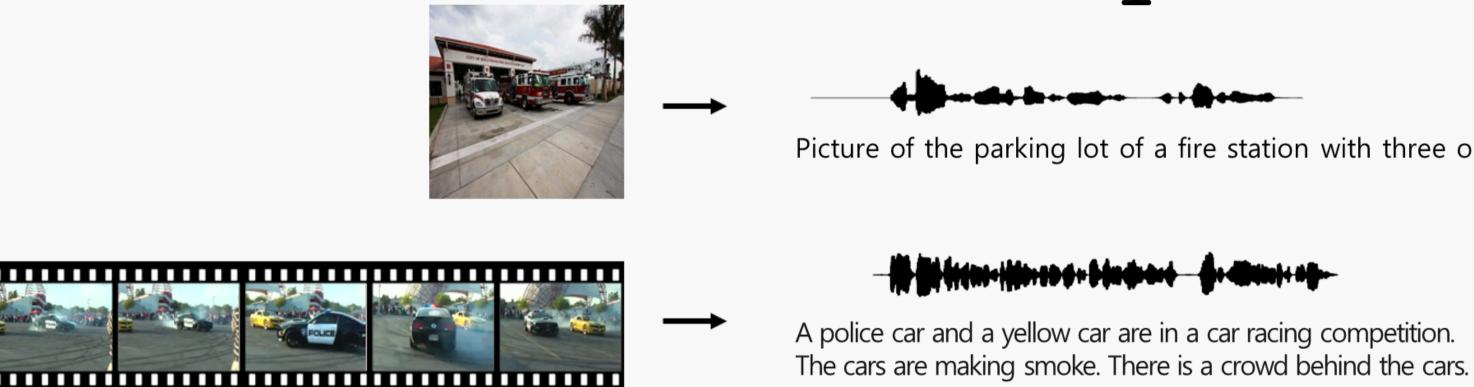
Spoken sentense-Visual Pair is provided. Retrieve the most proper descriptive narration/image

Introduction Visually grounded speech



Introduction Difficulties

Collecting high quality spoken sentense-visual pair is difficult.



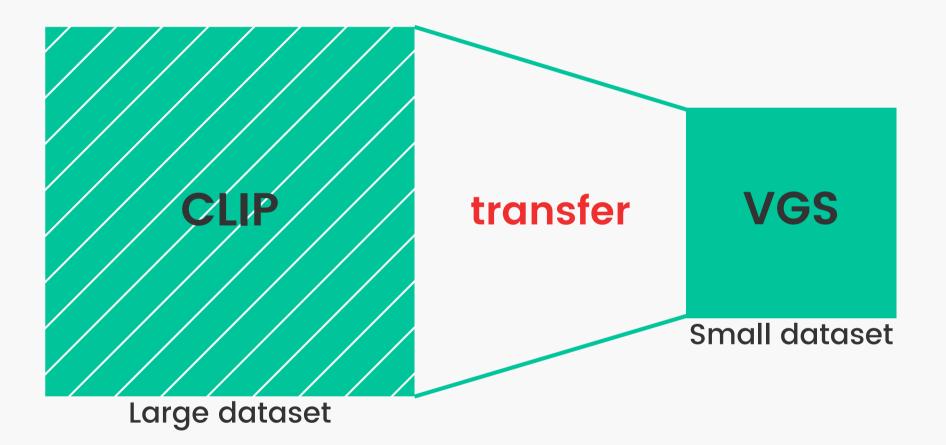
Challenges in Creating or Collecting Large-Scale Datasets extremely difficult

Picture of the parking lot of a fire station with three or four firetruck.

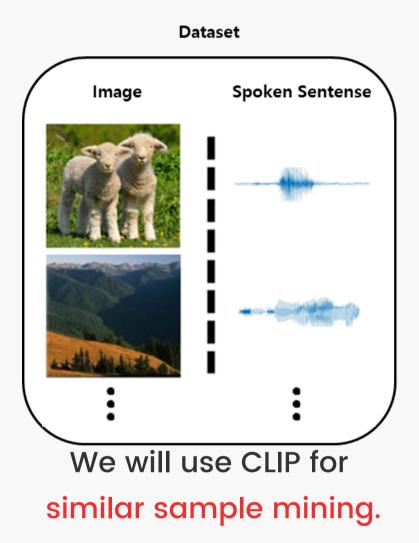
Introduction

Motivation

"Apply knowledge transfer from CLIP to VGS"



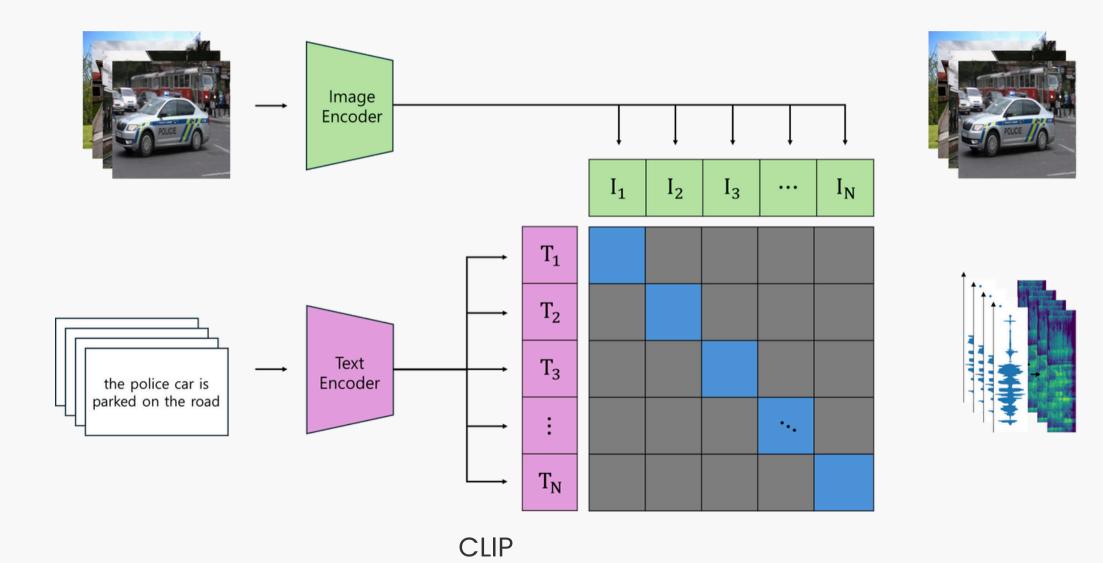
"Our goal is to distill the knowledge from the CLIP model into the Visually Grounded Speech (VGS) system to improve its retrieval score."

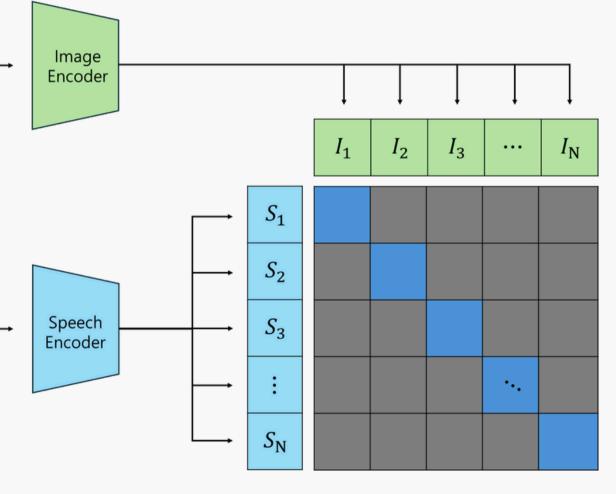


Introduction

Comparison and Contrast: CLIP vs VGS

Why do we use CLIP?





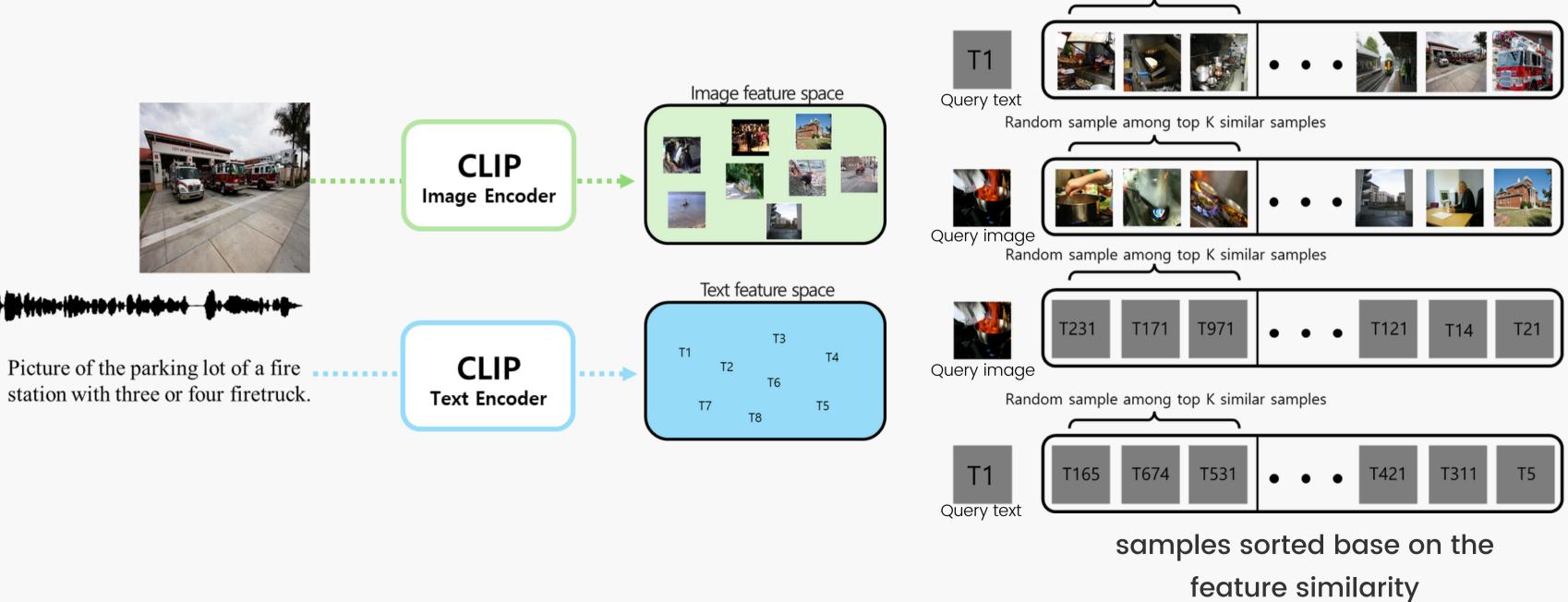
9

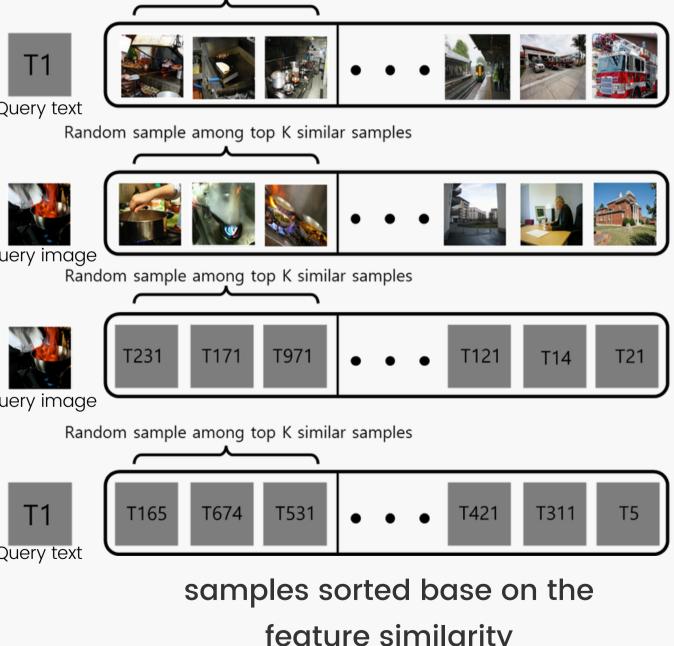
Semantically Similar Samples



How to collect Semantically Similar Samples

"Apply knowledge transfer from CLIP to VGS"





Random sample among top K similar samples

How to collect Semantically Similar Samples

Sorted based on the feature similarity

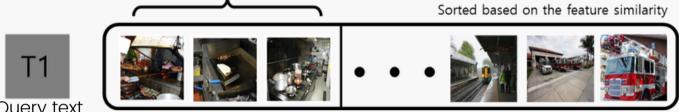
T31

T421

T5

"Apply knowledge transfer from CLIP to VGS"

Random sample among top K similar samples



Random sample among top K similar samples T971 T171 Query image

Query text

Query text

T1 : The food is being cooked on a stove

Random sample among top K similar samples

T674

T231 : Two pots of soup are cooking on a commercial stove T171 : A man and a chef's hat and white uniform is seen within a bowl of something while a pot T971 : Close up photo of a chef working on some sort of a dish is pouring sugar or salt on top of it

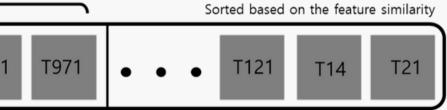
T165

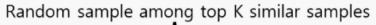
T165 : The food is being cooked in skillet there's also some green vegetables

T531

T674 : There are people cooking food in a kitchen

T531 : This picture we also see some delicious food on a plate being prepared for dinner





Sorted based on the feature similarity

How to collect Semantically Similar Samples

"Apply knowledge transfer from CLIP to VGS"

T1 : The food is being cooked on a stove

<org,org>

<t2i, i2t>

<t2i, t2t>

T231 : Two pots of soup are cooking on a commercial stove

<org, i2t>

T674 : There are people cooking food in a kitchen

<org, t2t>

T1 : The food is being cooked on a stove

<i2i, org>

T231 : Two pots of soup are cooking on a commercial stove

<i2i, i2t>

T674 : There are people cooking food in a kitchen

<i2i, t2t>

T1 : The food is being cooked on a stove

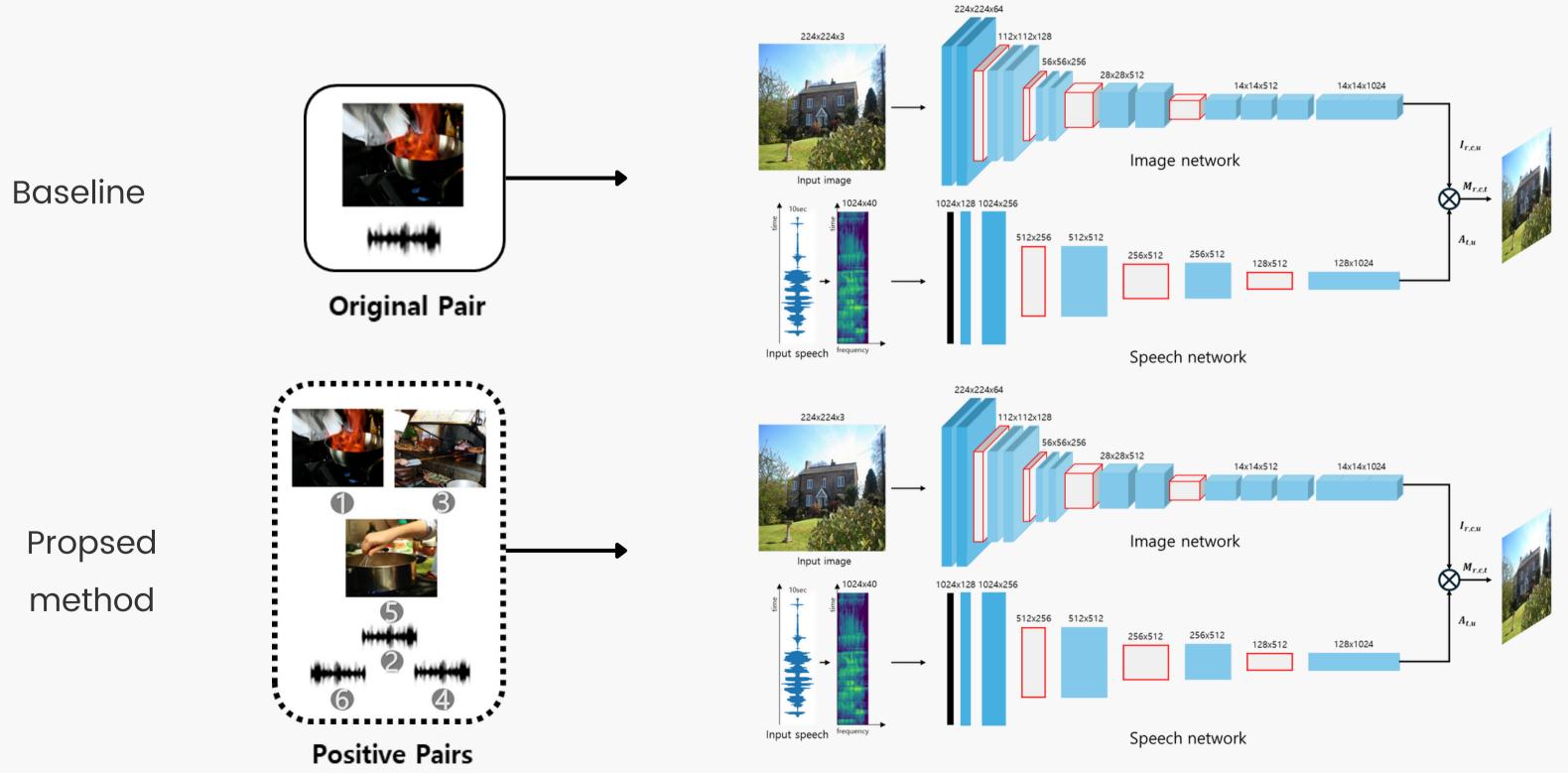
<t2i, org>

T231 : Two pots of soup are cooking on a commercial stove

T674 : There are people cooking food in a kitchen

Experiments

My Method : Knowledge transfer from CLIP to VGS



Quantitative Results : Ablation study

Quantitative results on Places Audio Caption dataset out of 1000 samples

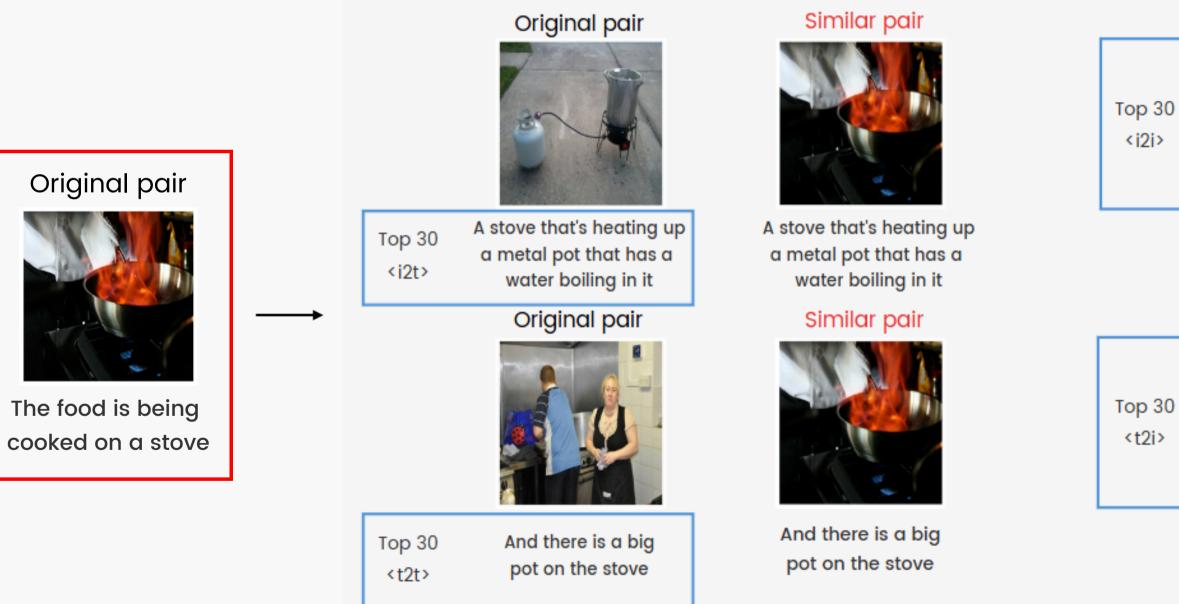
	NN Search				$\mathbf{A} ightarrow \mathbf{I}$			$\mathbf{I} ightarrow \mathbf{A}$			
	Original	T2T	T2I	I2T	I2I	R@1	R@5	R@10	R@1	R@5	R@10
(A)	1	X	X	X	×	10.9	33.2	46.9	11.3	34.2	45.4
(B)	1	1	×	×	×	11.4	36.5	49.8	12.6	38.5	49.3
(C)	1	×	1	×	×	12.7	38.2	51.9	15.1	38.3	51.5
(D)	1	×	×	1	×	10.6	32.9	49.2	12.5	35.3	48.2
(E)	1	×	×	×	1	10	32.7	47.1	10.7	33.1	47.1
(F)	1	1	×	×	1	11.5	35.4	50.4	12.1	37.5	50.1
(G)	1	1	×	1	X	12.8	38.7	52.1	13.7	38.1	51
(H)	1	1	1	1	X	11.5	36.8	51.5	13.2	38.2	50.9
(I)	1	1	1	1	1	10.6	35.6	52.2	12.1	36.1	51

Table 1. Ablation studies on our proposed method to see the impact of each positive pair.

These experiments were conducted using a single GTX1080ti GPU.

Quantitative Results : Ablation study

Why does using i2i images as similar pairs result in lower performance?



Original pair

You can see the inside of a boat made out of wood

Original pair

A ceramic bowl that has agreed and said

Similar pair

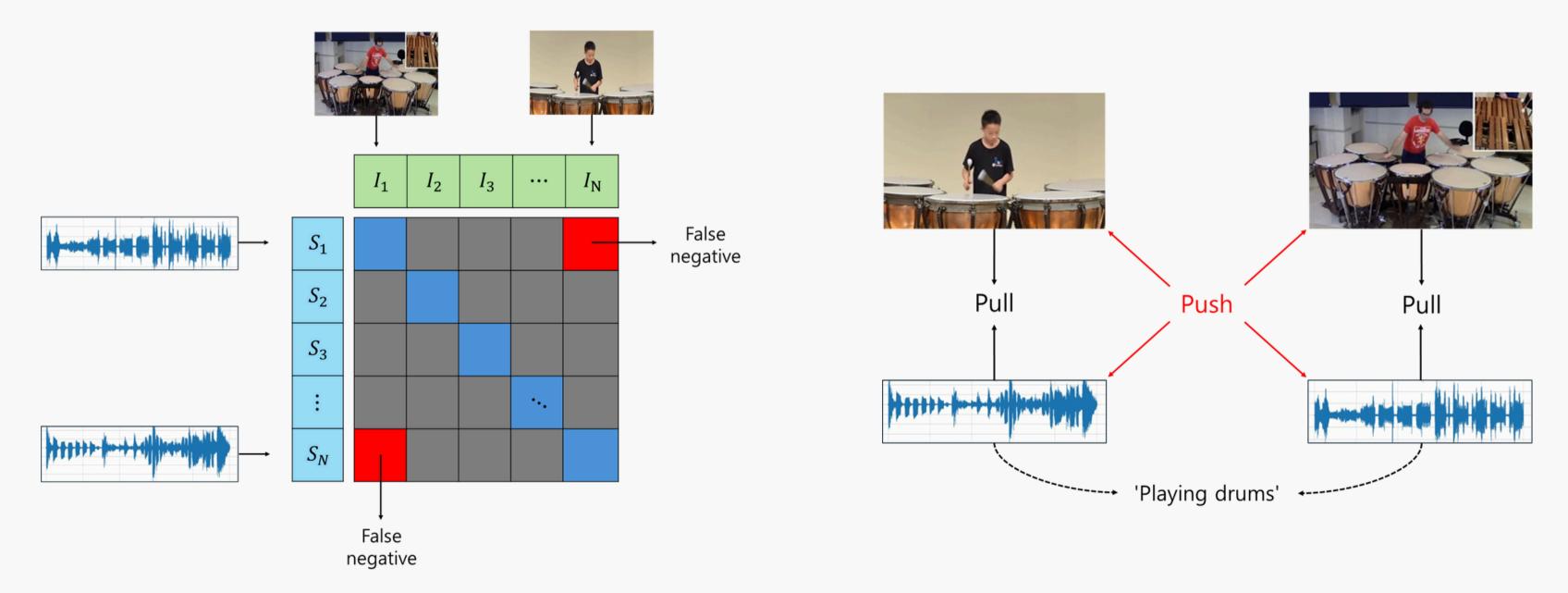
The food is being cooked on a stove

Similar pair

The food is being cooked on a stove

False Negative Aware Contrastive Learning

Why did the Retrieval Score Increase?

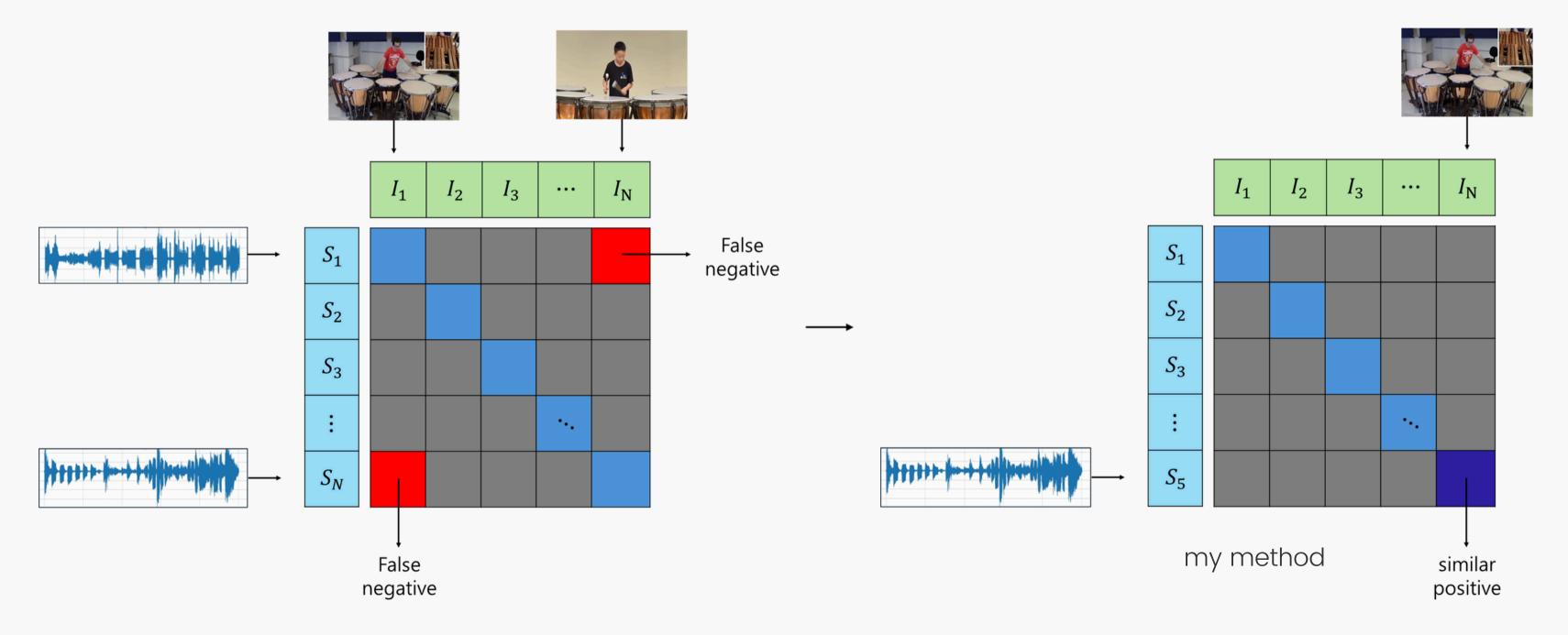


We discover that with a batch size of 128, around 40% of the samples in VGG Sound will encounter at least one false negative sample during training.

Learning Audio-Visual Source Localization via False Negative Aware Contrastive Learning(https://arxiv.org/abs/2303.11302)

False Negative Aware Contrastive Learning

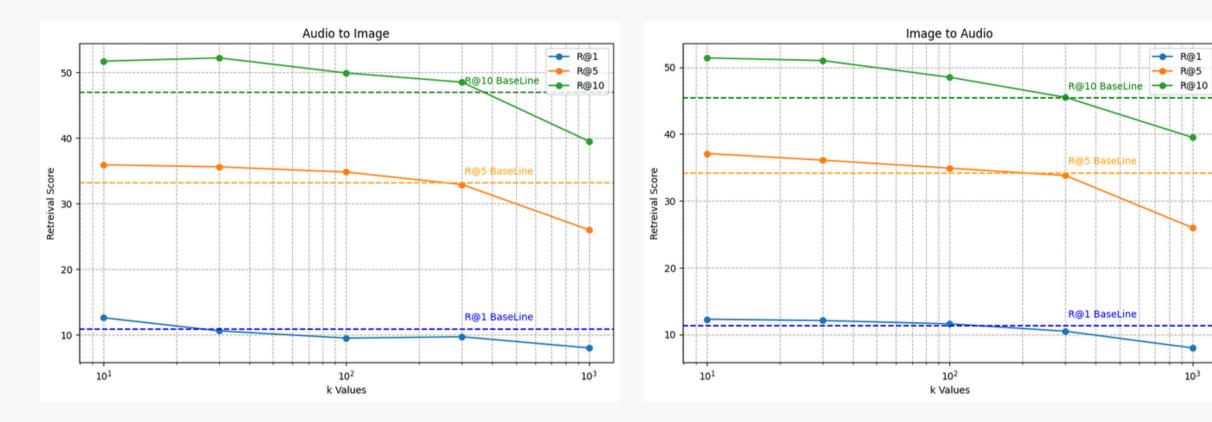
Why did the Retrieval Score Increase?



"False negatives lead to push, but they are pulled back due to positive similarities."

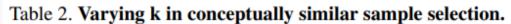
Quantitative Results : K - Ablation study

Quantitative results on Places Audio Caption dataset out of 1000 samples



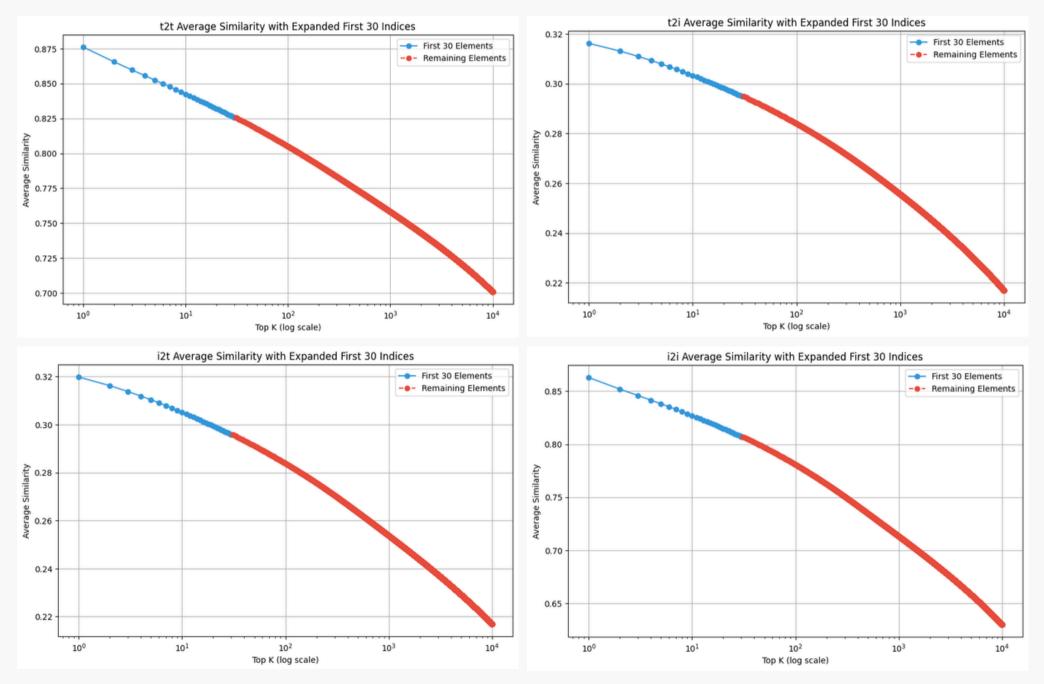
V	
Ζ	

	k in k-NN	10	30	100	300	1000
I	R@1↑	12.6	10.6	9.5	9.7	8
↑	R@5↑	35.9	35.6	34.8	32.9	26
V	R@10↑	51.7	52.2	49.9	48.5	39.5
V	R@1 ↑	12.3	12.1	11.6	10.5	8.6
↑	R@5↑	37.1	36.1	34.9	33.8	27.9
-	R@10↑	51.4	51	48.5	45.5	40.1

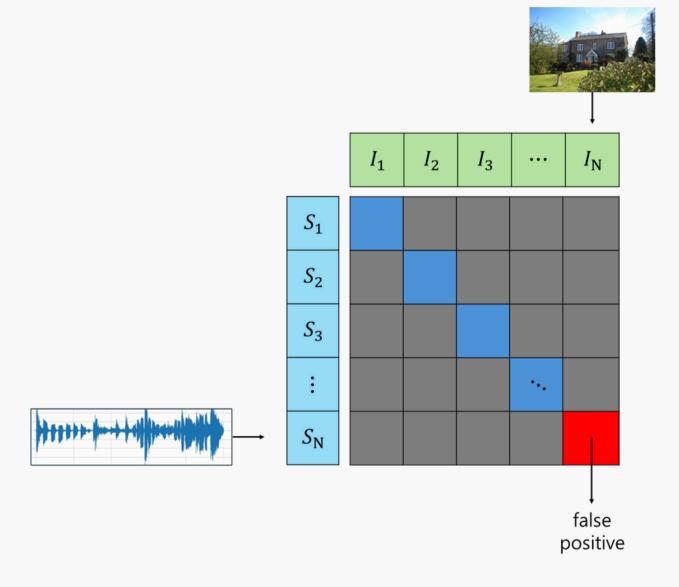


Quantitative Results : Basis of the research results

Average of the Top K similarity



This graph represents the logarithmic scale of the expression, which is the average of the top K similarities computed for each of the 100,000 features against the other 100,000 features



Quantitative Results: Curve Based on Data Set Size

Performance Efficiency Comparison: Baseline vs. Use of Positive Pairs

	Dataset	50K	100K	150K	200K	250K	300K	350K
$\mathbf{A} \to \mathbf{I}$	R@1↑ R@5↑ R@10↑	18.5	10.9 33.2 46.9	13.6 38.6 52.8	17.4 46.8 59	18.6 48.7 62	19.3 50.4 62.6	21.7 50.7 65.1
$\mathbf{I} \to \mathbf{A}$	R@1↑ R@5↑ R@10↑		11.3 34.2 45.4	14.4 36.6 51.4	18.2 44.4 56.7	18.5 48.2 60	21 47.8 61.2	20.4 50.1 64.4

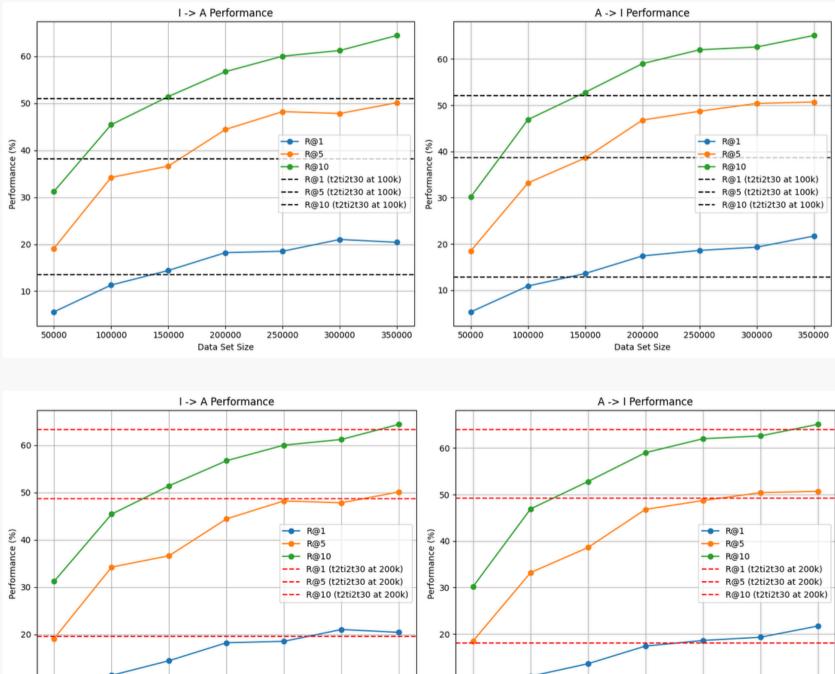
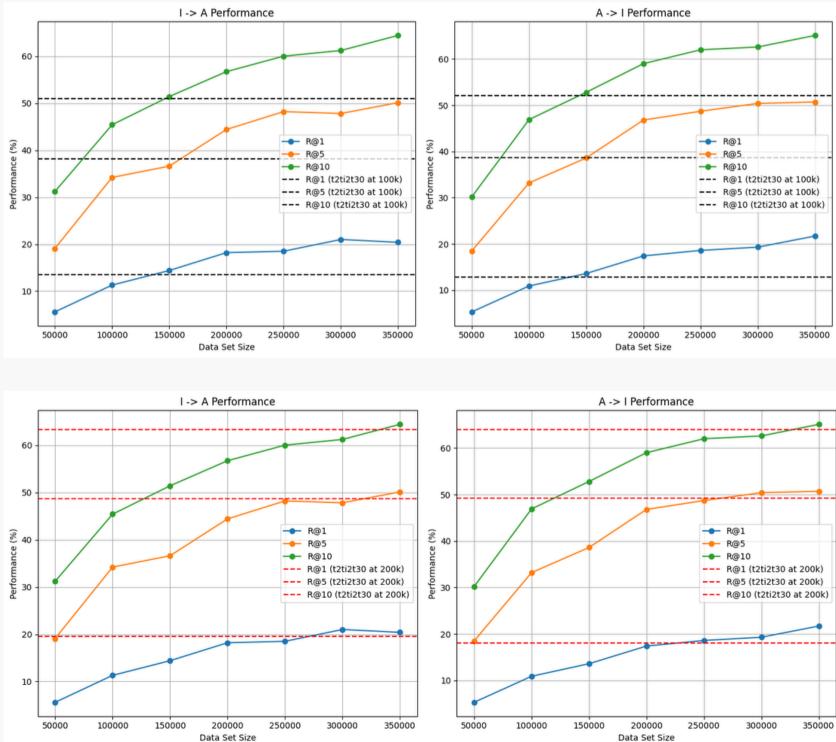


Table 3. Baseline performance varying with dataset size.

	NN Search				$\mathbf{A} \to \mathbf{I}$		$\mathbf{I} \to \mathbf{A}$		
	Original	T2T	I2T	R@1	R@5	R@10	R@1	R@5	R@10
100K	1	1	1	12.8	38.7	52.1	13.7	38.1	51
200K	1	1	1	18	49.2	63.9	19.5	48.7	63.3

Table 4. Performance of positive pairs varying with dataset size.



21

- "We are able to mine similar samples through knowledge transfer from CLIP.
- Using this for training, we observe an improvement in retrieval scores. This allows us to transfer the vast amount of knowledge from CLIP to the Davenet model.
- False negatives can hinder the learning process, but by mining similar samples and using them for training, we achieve improved performance."

Thank you for listening